Article 4117

Title of the article

EVALUATION OF THE CALCULATION ACCELERATION EFFECT, CAUSED BY THE SUPPORT OF QUANTUM SUPERPOSITION STATES DURING ADJUSTMENT OF OUTPUT CONDITIONS OF A “BIOMETRICS - CODE” NEURAL NETWORK CONVERTER 

Authors

Volchikhin Vladimir Ivanovich, Doctor of engineering sciences, professor, President of Penza State University (40 Krasnaya street, Penza, Russia), president@pnzgu.ru
Ivanov Aleksandr Ivanovich, Doctor of engineering sciences, associate professor, head of the laboratory of biometric and neural network technologies, Penza Research Institute of Electrical Engineering (9 Sovetskaya street, Penza, Russia), ivan@pniei.penza.ru
Bezyaev Aleksandr Viktorovich, Candidate of engineering sciences, leading specialist of STC “Atlas” branch in Penza (9 Sovetskaya street, Penza, Russia), Bezyaev_Alex@mail.ru
Elfimov Andrey Vladimirovich, Engineer, “Argus” branch of Penza  Research Electrotechnical Institute (69a Pobedi avenue, Penza, Russia), drec@yandex.ru
Yunin Aleksey Petrovich, Head of research department, Penza Research Institute of Electrical Engineering (9 Sovetskaya street, Penza, Russia), ivan@pniei.penza.ru

Index UDK

 519.2, 612.087, 621.319.7

DOI

 10.21685/2072-3059–2017-1-4

Abstract

Background. The aim of the work is to estimate the benefit of using the program support, the effects of quantum superposition of the neural network’s output.
Materials and methods. To observe the effects of quantum superposition the authors used a method consisting in blurring of deterministic data of one “Friend” image example by "white noise" generator data. For this reason, a part of neural network convereter’s output discharges are unstable.
Results. It is proposed to use codes to detect and correct errors, storing syndromes of related errors in the form hash functions from the true state of the corrected code.
Conclusions. The implementation of the self-correcting code with its length of 256 bits, capable of detecting and correcting 12 errors, gives a benefit in reduction of the computation by 20 orders of magnitude. This benefit is due to the use of effects of the support of quantum superposition having 12 q-bits of length.

Key words

quantum superposition, neural network “biometrics – code” converter, discrete spectrum of output states, statistical analysis on small samples.

Download PDF
References

1. Dodis Y., Reyzin L., Smith A. Proc. EUROCRYPT. 2004, April 13, pp. 523–540.
2. Monrose F., Reiter M., Li Q., Wetzel S. Proc. IEEE Symp. on Security and Privacy.2001, pp. 202–213.
3. Ramírez-Ruiz J., Pfeiffer C., Nolazco-Flores J. Advances in Artificial Intelligence – IBERAMIA-SBIA 2006 (LNCS 4140). 2006, pp. 178–187/
4. Yazov Yu. K., Volchikhin V. I., Ivanov A. I., Funtikov V. A., Nazarov I. G. Neyrosetevaya zashchita personal'nykh biometricheskikh dannykh [Neural network protection of personal biometric data]. Moscow: Radiotekhnika, 2012, 157 p.
5. Akhmetov B. S., Ivanov A. I., Funtikov V. A., Bezyaev A. V., Malygin A. Yu. Tekhnologiya ispol'zovaniya bol'shikh neyronnykh setey dlya preobrazovaniya nechetkikh biometricheskikh dannykh v kod klyucha dostupa: monogr. [A technique of using large neural networks for conversion of fuzzy biometric data into access key code: monograph]. Kazakhstan, Almaty: Izd-vo LEM, 2014, 144 p. Available at:http://portal.kazntu.kz/files/ publicate/2014-06-27-11940.pdf
6. GOST R 52633.5–2011. Zashchita informatsii. Tekhnika zashchity informatsii. Avtomaticheskoe obuchenie neyrosetevykh preobrazovateley biometriya-kod dostupa [Data protection. Information protecting technology. Autmatic learning of neural network “biometrics - code” converters]. Moscow, 2011.
7. Ivanov A. I. Mnogomernaya neyrosetevaya obrabotka biometricheskikh dannykh s programmnym  vosproizvedeniem effektov kvantovoy superpozitsii [Multidimensional neural network processing of biometric data with program reproduction of quantum superposition effects]. Penza: Izd-vo AO «PNIEI», 2016, 133 p. Available at: http://pniei.pf/activity/science/BOOK16.pdf
8. GOST R 52633.3–2011. Zashchita informatsii. Tekhnika zashchity informatsii. Testirovanie stoykosti sredstv vysokonadezhnoy biometricheskoy zashchity k atakam podbora [Data protection. Information protecting technology. Testing of high-reliability biometric protection device resistance to key searching attacks]. Moscow, 2011.
9. Nil'son M., Chang I. Kvantovye vychisleniya i kvantovaya informatsiya [Quantum calculations and quantum informatics]. Moscow: Mir, 2006, 821 p.
10. Ivanov A. I. Pervaya milya [The first mile]. 2015, no. 1, pp. 40–47.
11. Morelos-Saragosa R. Iskusstvo pomekhoustoychivogo kodirovaniya [The art of noiseimmune coding]. Moscow: Tekhnosfera, 2007, 320 p.
12. Bezyaev A. V. Neyrokomp'yutery: razrabotka, primenenie [Neurocomputers: development, aplication]. 2012, no. 3, pp. 52–55.
13. Bezyaev A. V., Ivanov A. I., Funtikov V. A. Vestnik Ural'skogo federal'nogo okruga. Bezopasnost' v informatsionnoy sfere [Bulletin of Ural Federal District. Information field security]. 2014, no. 3 (13), pp. 4–14.

 

Дата создания: 08.08.2017 15:45
Дата обновления: 09.08.2017 15:32